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A THEORETICAL STUDY O F  COMBUSTION 
AND QUENCHING O F  SOLID PROPELLANT 

ROCKET MOTORS DURING DEPRESSURIZATION 

SUMMARY 

The conservation equations in the solid and gas phases a r e  coupled 
with the chamber w e r a l l  m a s s  balance equation to  produce a method of 
c-imputing t ransient  burning rates  in  solid propellant motors .  
i s  used to compute burning ra tes  during r a p i d  depressurizations achieved 
by suddenly enlarging the exhaust nozzle. 
character iz ing the depressurization r a t e ,  D,, is  used to cor re la te  the r e -  
sul ts .  During depressurizations,  burning ra tes  a r e  smal le r  than the steady 
s ta te  values a t  the corresponding chamber p re s su res .  
when the depressurization pa rame te r ,  D,, exceeds some cr i t ical  value Dsc. 
The quench l imit  of a propellant can be given a s  a single curve on the 
DS-P2/P1 plane, where PI i s  the init ial  chamber p re s su re  and P 2  i s  the 
steady operating p res su re  corresponding to the enlarged nozzle a r e a .  
resul ts  a r e  in reasonable agreement with experiments.  
s eve ra l  variables on the quench l imit  a r e  discussed. 
the present  theory a r e  suggested. 

This method 

A nondimensional parameter  

A quench occurs  

The 
The effects of 

Ways of improving 

INTR ODU C TION 

It has been observed that a solid propellant rocket motor  can be 
quenched by a rapid decrease  of chamber p re s su re .  
be achieved by enlargement of the throat a r e a  o r  by opening a vent. 
depressurizat ion r a t e  i s  high enough, a quench will occur even though the 
steady s ta te  chamber p re s su re  corresponding to the enlarged throat  a r e a  
i s  well above the low p res su re  limit of stable combustion. 

Depressurization can 
If the 

The f i r s t  systematic  study of this phenomenon was reported by 
1 Ciepluch . 

f r e e  volume. 
chamber .  
i s  reduced a t  a r a t e  grea te r  than some  cr i t ical  ra te .  The cr i t ical  ra te  
was  approximately proportional to the initial chamber p re s su re .  
c r i t i ca l  t ime was,  therefore ,  nearly independent of the initial chamber 
p r e s s u r e .  
another having a different geometry (chamber  free-volume, propellant 
sur face  a r e a )  even with the same propellant. 
effects of propellant composition on the cr i t ical  t ime . The cr i t ical  t ime 
was  decreased  by an  increase  in  aluminum or ammonium perchlorate  con- 
centration. There  was no correlation between the cri t ical  t ime and the 
s t r and  burning ra te .  

He burned propellant s labs  in a chamber of relatively smal l  

He observed that a quench will occur i f  the chamber p re s su re  
He achieved rapid depressurization by suddenly venting the 

The 

The cr i t ical  t ime in  one motor  need not be the same  a s  that in  

Ciepluch also studied the 
2 

One cr i te r ion  for quenching might be that the burning ra te  goes to zero.  
-4 L~~?w!el_lge =f  t h c  bi;rnir,g rate &iriiig Fi-Es5iii-e tr i ius ier l i s  is, therefore ,  
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essent ia l .  Transient  ball ist ic erformance has sometimes been evaluated 

to  predict  nonsteady burning rates .  
steady s ta te  r a t e s  resul ted from the slow readjustment of the tempera ture  
field in the solid. 
ible. 

with steady s ta te  burning rates! Von Elbe 4 developed a theoretical  model 
He zss -mied  that departures  from 

The relaxation t ime in  the gas was assumed to be neglig- 
He t rea ted  a case of a moderate r a t e  of p re s su re  change. He assumed:  

( A )  The temperature  profile in  the solid is the same  as that 
of the steady state a t  the corresponding burning ra te .  

(B) The heat flux from the gas phase is  the same a s  the steady 
s ta te  value a t  the corresponding burning r a t e .  

Von Elbe 's  r a t e  law says that the burning r a t e  at any instant is determined 
by the instantaneous chamber pressure  and i ts  t ime derivative. 
says that burning ra tes  during depressurizations a r e  smal le r  than steady 
s ta te  burning ra tes  at the corresponding p res su res .  Thus,  a quench might 
occur a t  some cr i t ical  depressurization ra te .  He derived his equations by 
considering the behavior of the temperature  readjustment process .  
s a m e  thing can be  done m o r e  concisely a s  follows: the integral  form of the 
energy equation in the solid i s ,  

It a l s o  

The 

cG(Tw-Ti) = f - dq/dt * 
S 

** 
where f s  is the heat flux to  the grain just  inside the propellant sur face  
and q i s  the energy content in the solid. In the steady s ta te  dq/dt = 0, hence, 

- - f s ,  steady 
- 

c(Tw- Ti) steady - (ii) 

The t e r m  dq/dt  mus t  be positive in a depressurizat ion process  i f  combus- 
tion is to continue. 
equation (i) requires  that the burning r a t e  during depressurizat ion be sma l l e r  
than the steady s ta te  ra te .  When dp/dt  has to  be considered, the tempera-  
t u re  gradient on the gas side of the sur face  must  be l a rge r  to satisfy the 
energy balance a t  the surface.  Then fs in the depressurization must  be 
l a r g e r  than the steady s ta te  value. 
rapid depressurizat ion process  may a l so  be questionable. 
ing r a t e  law, with a different constant was derived elsewhere . 

Hence, if  f,, transient i s  assumed to be equal to f,, steady, 

The applicability of assumption ( A )  to  a 
The s a m e  burn- 

5 

Von Elbe ' s  basic  equation has a n  e r r o r .  
of dq/dt in equation (i). 

It has  the t e rm 2dq/dt instead .b -I. 

:ky6 fs is not the s a m e  a s  the heat flux from the gas phase f 
re la ted  by fg - f s  = AhwC. Von Elbe overlooked this difference. 

They a r e  g- 

- 2 -  
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6 In previous work we described an  experiment in which chamber 
gas was suddenly expanded into a secondary evacuated chamber.  
a rapid depressurizat ion a s  the secondary chamber  w ~ s  being filled, the 
p r e s s u r e  continued to  decrease a t  a slower ra te .  
pressurizat ion was thus lower than the steady s ta te  ra te  a t  the same  
p res  sure .  

After 

The burning r a t e  a f te r  de-  

A nonsteady burning r a t e  theory has  been proposed in connection 
with oscillating combustion? A modification8 permits  inclusion of 
heterogeneous sur face  reactions.  
were  l inear ized around the steady s ta te  conditions by a smal l  per turba-  
tion method. 
t ransients  was used  to determine quenching c r i t e r i a .  A close relation- 
ship between quenching cr i te r ia  and stabil i ty c r i te r ia  was suggested. 
However, s ince the smal l  perturbation method was used in  the mathe-  
mat ical  t reatment ,  appl icat im of this theory to  quenching may not be 
justified. The models of neither reference 4 nor 8 couple the overall  
gasdynamics (energy and m a s s  conservation in the whole chamber) to the 
response of the solid to  p re s su re  disturbances.  Hence, they do not give 
the effects of motor  configuration on the quenching behavior. 

The nonsteady conservation equations 

The f i r s t  o rde r  response of burning r a t e s  to p re s su re  

9 It has a l so  been observed that combustion cannot be maintained at  
p re s su res  below a cr i t ical  p ressure  which depends on the character is t ic  
length of the chamber.  
dp/dt-extinguishment. 

that  L*-extinguishment occurs  because d g / d t  i s  amplified during the de- 
creasing p res su re  phase of an  oscillation. 
point of L*-extinguishment is  said to roughly correspond to d F / d t  a t  
dp/dt  - extinguishm ent. 

This i s  called L*-extinguishment i n  contrast  to  
A propellant which i s  susceptible to L*-extinguishment 

i s  a l so  susceptible to dp/dt-extinguishment 10 . This i s  interpreted'' to mean 

The measured  d P / d t  at the 

Procedures  for cL>mbustion termination by nozzle a r e a  variation have 
considered both mechanisrnsl2.  It was implicitly assumed that the cr i t ical  
t ime to produce a dp/dt-extinguishment is the same for a l l  motors .  
assumption has  drawbacks.  If depressurization i s  init iated by sudden ',pen- 
ing of a secondary nozzle, the size of the secondary nozzle and the chamber 
volume determine the depressurization ra te .  
p r e s s u r e  and Pz the operating pressure  when the motor  uses  both nozzles,  
the motor  cannot be extinguished if p2 El is near ly  one, no mat te r  how 
l a rge  dP!dt may be made by reducing the chamber volume or  the propellant 
sur face  a r e a .  On the other hand when p2Dl i s  near ly  zero,  the motor will 
be  extinguished even when d P / d t  is small .  
fore ,  be determined by coupling chamber ball ist ics with a nonsteady burning 
r a t e  law. 

This 

If P1 i s  the initial chamber 

The quench l imit  must ,  there-  

When a solid propellant motor is depressur ized  a t  non-zero ambient 
p re s su re ,  one of th ree  things may occur:  a quench, a burn-out o r  a r e -  
ignition13 in which the motor  appears to have quenched for severa l  seconds 
Iner t  gas injection has virtually no effect on the occurrence of reignitions 

1 4. . 
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Solid phase reactions may play an  important role  in  the p rocess ,  however. 

The present  s ta te  of a r t  in this field suggests that a sound thecret i -  
ca! frainew-ork is needed to prtJvide a method for interpretation and co r re l a -  
tion of the experimental  data and to suggest meaningful experiments.  
though few kinetic o r  t ransport  properties a r e  known, such a framework 
can s e r v e  this purpose. 
do this .  
is not r e s t r i c t ed  to sma l l  perturbations. 
the assumption i s  made that the adiabatic flame temperature  remains 
constant during the p r e s s u r e  transient.  The resu l t s ,  therefore ,  predict  
a need for higher depressurization r a t e s  to produce a quench than would 
be required i f  a m o r e  real is t ic  temperature  were  used. The method can 
easily be modified to handle different f lame temperatures .  This method 
i s  then used to compute burning rates  during rapid depressurization to 
obtain quenching l imits  in t e r m s  of appropriate  pa rame te r s .  The effects 
of motor configurations a r e  included by coupling the chamber m a s s  balance 
to the conservation equations in the solid and gas phases.  The resul ts  a r e  
compared with experimental data. They a r e  used to suggest natural pa ra -  
m e t e r s  which should be used to correlate  experiments and to suggest addi- 
tional experiments and theoretical studies.  

Even 

The work descr ibed in this report  i s  intended to 
A method for computing t ransient  burning r a t e s  i s  described. It 

Fo r  computational simplicity, 

FORMALIZATION O F  THE PROBLEM 

In this section, a nonsteady one dimensional combustion model is 
presented. 
dimensions,  a one dimensional model i s  probably a good approximation. 
The conservation equations in the solid and the gas phase a r e  used. 
the boundary conditions imposed a t  the propellant surface,  the burning ra te  
i s  determined uniquely as a “connecting coefficient” of these partial  dif- 
f e r  entia1 equations. 

Since the flame is very thin compared with typical motor 

With 

The problem is  admittedly oversimplified. Thermodynamic and 
t r anspor t  properties a r e  assumed constant, 
o r d e r  n, which may have fractional values, is assumed.  Molecular weights 
of reactant and product a r e  assumed to be equal. 

A single s tep reaction of the 

Gas Phase 

The continuity equation i s ,  

If a l l  diffusion coefficients a r e  assumed equal and thermal  diffusion is 
negligible, the conservation equation for  species i is ,  

- 4 -  
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where 

and 

aPi  aci - -  
+ - = Wi(PiY T) 

- 

- 
a t  a x  

p.  = mip 
1 

E . = m . z - p ~  - i . 
ax 1 1 

We consider only species “reactant“ and “product”. 
tions (1) and (2 )  yields, 

Combination of equa- 

2 
am. am. a m. - - 1 1 1 

P -  a t  + E -  ax - PD -2 ax = W1(P1’T) ( 3 )  

where the subscript  1 denotes reactant. 
reactant is given by, 

The m a s s  ra te  of formation of the 

W 1 = -Kplnexp(-E/T) .  (4)  

The diffusion-therm0 effect and kinetic energy of the gas a r e  assumed 
negligible. 
energy equation is ,  

If heat capacities of reactant and product a r e  the same, the 

where  
- 0  

i ’  h. = c  T t h 
1 P  

and  am. 

The heat of chemical reaction a t  constant p r e s s u r e  is A h o  = hol - go2 . 
Combination of equation (5) with ~n ,ua . t i a~s  (1) an2 ( 2 )  yie!As, 

- 5 -  
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d . 
Multiplying equation 
obtains, 

( 3 )  by Ago and adding the resul t  to equation ( 6 ) ,  one 

2 
a m  

e - 2  = o ,  (7)  
1 a i ;  k a2g 

-2  c P y  - -  
at a t  P a x  

It  is now as sumed  that the Lewis number is one. Then k l c  = pD = and 
equation (7) becomes, P 

We remove the momentum equation by assuming that the p r e s s u r e  in 
the combustion zone i s  uniform, i. e .  , P = P(f). When the throat a r e a  is 
suddenly enlarged, the p re s su re  in the combustion zone s ta r t s  to change 
when the rarefaction wave f i r s t  reaches i t .  By this t ime the rarefaction 
wave is much thicker than the flame even though the rarefaction may have 
s t a r t ed  as a centered wave. P r e s s u r e  gradients in the combustion zone 
can, therefore ,  be neglected. 

The boundary conditions a t  the propellant surface a r e :  continuity of 
m a s s  flux, 

Gs ( t  ) = E _ ( O , i ) ,  (9) 

continuity of temperature ,  

T S ( O , t )  = 

continuity of species m a s s  flux, 

T ( 0 , ; )  = T , g W 

and energy balance, 

- A h  E ( t )  . w s  
ax ax 

Combination of equations(l1) and (12) gives the boundary condition for equa- 
t i m  ( 8 ) ,  

- 6 -  
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where A h  
for endothermic reactions.  

i s  the enthalpy change of the surface reaction. It is positive 
W 

The surface temperature  is a s sumed  to remain constant during de- 
pressurizat ion.  
tion of the form,  

Since the surface reaction is a rate  process ,  a ra te  equa- 

may  be a better one. 
components suggest that E 
r a t e s ,  the surface temperature  should stay almost  constant. 
ments of surface temperatures  at various operating pressures16 support 
this contention. 

However, studies of the pyrolysis ra tes  of propellant 
is large. Thus, for a wide variation of burning 

W 
Measure-  

The  initial temperature  and concentration profiles a r e  given by solu- 

If the p r e s s u r e  i n  the chamber is uniform, the continuity equation a p -  
tions of the steady s ta te  equations; the initial m a s s  flow ra te  profiles a r e  
not. 
plied to the whole chamber gives a p r e s s u r e  versus  t ime relation of the type 

If dl?/df (hence, d p / d t )  is not ze ro  at t = 0, equa- 
tion (?) requires  that d c / d x  be non-zero a t  <= 0, although i s  constant along x before depressurization. 
equation, i. e. , the accelerat ion time i s  a s sumed  negligibly small .  The 
gas velocity undergoes a n  almost  discontinuous change but the position of 
each gas element does not change. Consequently, the temperature  and the 
concentration profiles stay unchanged. 
by the solution of the steady state equations, initial values of E by the solu- 
tion of equation (1) with the initial value of d P / d t .  

= P ( - c t )  nea r  = 0 .  

This resul ts  from our neglect of the momentum 

Initial values of T and mi can be given 

Solid Phase 

It i s  a s sumed  that there  i s  no chemical reaction i n  the solid. 

If a coordinate system fixed with respect  to the propellant surface 
is used, the energy equation i s ,  

, 

aT - a2 T 
c a?. t c 5 . t )  - , - k x  

at' ax ax P S  

The boundary condition i s ,  T ( 0 , t )  = . 
W 

If the coordinate system fixed with respect  to the solid i s  used, the energy 
equation becomes, 

- 7 -  



a.i; a2T 
psc: = - - 2  a i  ax 

V 

. 

_. - with the boundary condition 

F o r  both coordinate systems the initial data a r e  given by the solution of, 

with the boundary conditions, 

W 
T ( 0 , t )  = T 

and 
T ( -  "0, t )  = Ti 

The equation for energy balance at  the propellant surface is  used with these 
equations. 

If p and 6 a r e  prescr ibed and the boundary condition (12) i s  removed, 
the solid and gas phase equations can be solved separately.  
r a t e  Gs is the "connecting coefficient" which m u s t  be determined to satisfy 
equation (12). 

The burning 

Chamber Cas Dynamics 

Equations (1) to (16) can be used to compute burning ra tes  i f  P ( t )  i s  
prescr ibed.  However, since depressurizations a r e  usually achieved by 
al terat ion of the engine hardware,  P ( t )  i s  an  unknown variable to be deter-  
mined. 
i s  combined with a propellant burning r a t e  law. In this study depressuriza-  
tion i s  a s sumed  to be achieved by a sudden opening of a vent nozzle. 

The quench l imit  i s  determined only when chamber gas dynamics 

When the ambient p r e s s u r e  i s  zero,  the m a s s  conservation equation i s ,  

V = E A  - ( m  t m ) .  
S P  t V d t  C 

P r e s s u r e  and temperature  a r e  assumed to be uniform in the chamber.  
the nozzle throats a r e  choked immediately, the m a s s  flow thrniigh the n ~ z z l e  

If 

- 8 -  



is given by, 
- 

m t m  = C ( A  + A )  P 
t v 1 t  

- 1 
where  

( Y  -k 1) R 

The P-;?I relationship has a minor effect on F-e relationship 6 . For  
simplicity we a s sume  a n  isothermal process  he re .  If F1 and P2 a r e  the 
steady s ta te  chamber p r e s s u r e s  corresponding to the throat a r e a s  At  and 
(At t A v )  and steady burning follows Viell ie 's  law, 

At 

At t A V 

Combination of equations (17), (18) and (19) yields,  

1' where  i s  the steady s ta te  burning ra te  a t  P 
1 

When the ambient p r e s s u r e  is not zero,  the depressurization process  
i s  the s a m e  until the chamber p re s su re  reaches the cr i t ical  p re s su re .  
this  the m a s s  flow ra te  

After 
through the nozzles is, 

Equation (17) becomes 

- 9 -  



where Ate  and Ave a r e  the nozzle exit a r e a s ,  and P1 and p 
be above the cr i t ical  p r e s s u r e .  

a r e  a s sumed  to 2 
The cr i t ical  p r e s s u r e  rat io  i s  given by, 

Non- Dimensionalization 
.J. the folloxing non-pimensional Tariables: x = x / x ,  - *  t = t / c ,  

6 
T = T / T ,  E = E/E and G = G/G, The non-dimensionalizing 

should be chosen in such a way that the magnitudes of 
such factors as aT /ax ,  e tc ,  in  the equations a r e  of the order  one; the mag-  
nitudes of the t e r m s  themselves a r e  now determined only by the magnitudes 
of the non-dimensi onal parameters .  
non-dimensional pa rame te r s  should be minimized. The obvious choices 
a r e ,  

At the same  t ime the number of 

* * * 
The choices for  T and E a r e  somewhat a rb i t r a ry .  
a way that the non-dimensional depressurization ra te  d P / d t  is -1 a t  t = 0. * Thus, t is the character is t ic  time of depressurization. 

We will choose t in such 

F rom equation (18), 

* 
We define different x ' s  in the solid and gas phases because the thicknesses 
of the the rma l  l aye r s  in  the two phases a r e  different. 
energy equation suggests the following definitions : 

The steady s ta te  

and 

in the solid phase, 

in the gas phase. 

The resultant non-dimensional equations can now be written. 

Gas phase. The continuity equation (1) becomes, 

where  

-10- 



The energy equation (6)  becomes,  

where K Ai;”F;r 
- n t l  n-2 c T  R G 1  

A =  

P W  

Equation (8) becomes, 
7 

P ah ah a% 
D g y - l  (2 at - a p ) t G z  at 

- -  2 - - 0 .  

ax 

The boundary conditions a r e :  

a n d  

T ( 0 , t )  = T (0,  t) = 1 ,  
S g 

( A h  0 -Ah t 1) G -- - ”’) +*) = G h  
W 6 c ax S , W  ax g ,w s g y w  * 

P 

The initial values of T and h a r e  given by the solution of, 

and  

d T  dLT - - -  = A ( 3 ”  my exp( - E / T )  = 0 
dx dx2 

2 
- 0 .  

dh d h - _ -  - 
dx dx2 

(33) 

Elimination of aT/a t  f rom equations (25) and (26)  and substitution into equa- 
tion (32) gives init ial  values of G. 

1 d P  x .  G(x, 0)  = 1-D - - 
g 7-1 dt 

(34) 

-11- 
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Solid phase. Equation (13) becomes, 

where 

2 
aT aT a T 

ax-, 
D - t G - - , =  - 
s at ax 2 

with the boundary condition, 

T ( 0 , t )  = 1 . 
Equation (14) becomes, 

7 

a T  aL T D -  = -  
s at 2 

ax 

with the boundary condition, 

The steady s ta te  equation (20)  becomes, 

2 
dT d T 

2 
- = -  
dy dy 

with the boundary conditions, 

and  
T(0) = 1 

T(-m) = T 
i '  

Chamber gas dynamics. The ballistic equation (20) becomes 

1 -m 
- (P2/P1)  G - P . d P  

The ballistic equation for subcritical p r e s s u r e s  (22) becomes, 

( 3 5 )  

( 3 5 ' )  

(36) 

( 3 8 )  



If the burning ra te  differs from the steady s ta te  r a t e  during a transient,  

A l l  t ime dependent t e r m s  a r e  associated with Ds and Dg; these pa ra -  
the difference comes from the time dependent t e r m s  in the governing equa- 
tions. 
m e t e r s ,  therefore ,  determine the magnitude of departure .  

phases to the character is t ic  t ime for depressurization. 

Ds and D r e -  
present  the rat ios  of the temperature response t imes in the solid and g gas 

Evaluation of Non-Dimensional P a r a m e t e r s  

To  evaluate the non-dimensional pa rame te r s  and  c a r r y  out numerical  
calculations, we need thermodynamic properties,  t ransport  propert ies ,  
and  chemical kinetic data. 

I t  will be shown later  that the present theory gives the relationship 
between the gas phase reaction order and p r e s s u r e  exponent 
s ta te  burning ra te  as  n = 2m. 
is not needed i f  the steady s ta te  burning ra te  at any chamber p r e s s u r e  is 
known. 
a r e  l is ted in Table 1. 
calculations. 

of the steady 
Knowledge of the preexponential coefficient 

Physical and chemical properties of typical composite propellants 
The values in the third column were  used in numerical  

TABLE 1 

VALUES O F  PHYSICAL QUANTITIES USED IN COMPUTATIONS 

typical values 

0. 3 - 0 .8  

5000 - 15000°K 

values used in  calculations 

0 .4 ,  0.5,  0 . 6  

5000°K(5. 56), 1000O°K(ll. 12) 

-90 cal /g(-0.2) ,  0, t 90  ca l /g  

0 . 3  cal/g°K 
0 . 5  cal/g°K 

16 
t 100 cal/g 

0 .28 -  0 . 3  cal/go$ 
0.45- 0.67 cal /g  K 
9 . 8 ~ l O - ~ c a l / % s e c .  cm 17 

2 . 0 ~ 1 0  cal/ C s e c . c m  

- 
17 

- 4  0 

o 16 800- 1000 K 900°K 

2500 - 3500°K 2700°K 

300°K 300°K 

1.7 g / cm 
3 
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T h r e e  values of m y  two values of E and th ree  values of Ah 
for the computations. 
propert ies  were  observed. 
dothermic,  neutral  and exothermic surface reactions having enthalpy changes 
of t90 cal /g ,  0, -90 ca l /g  corresponding to 4% = 0.2, 0,  and - 0 . 2  a r e  
considered, since they represent  a range of possible values16. 

were  selected 

The cases  of en- 

w In this way the effects of variations in  propellant 
A l l  other values were  fixed. 

D, and D g 
a n d  gas phases. 
t o  a p r e s s u r e  disturbance. 
they be c om e , 

represent  the temperature relaxation t imes in the solid 
A small  value of Ds or  D corresponds to a quick response 

g If we use the property values l is ted in Table 1, 

-4  -J ie  2 *  = 5 5 . 4 ~ 1 0  1/G,t ( E ,  i n  g / sec .  cm , t in  sec)  
p s c  D = -  

s - 2 *  
G ,  t 

>x 
A typical ammonium perchlorate composite propellant quenches when t = 
0 . 6 7 ~ 1 0 - ~  sec.  o r  d F / d t  = 0 . 7 ~ 1 0  
then, Ds = 0.827 and D 
izing quantities s o  that a l l  the derivatives and the reaction t e r m s  a r e  of the 
o r d e r  of one in  our non-dimensionalized equations. It may, therefore,  be 
concluded that, i f  d P / d t  i s  not extremely la rge ,  in the gas phase the t ime 
dependent t e r m s  a r e  negligibly small .  
in  the gas is very short .  

p s i / s ec .  a t  500 psia.  At the quench l imit ,  
= 1 . 0 2 5 ~ 1 0 - ~ .  We have chosen the non-dimensional- g 

This means that the relaxation t ime 

We may tentatively summarize our consideration of the problem as 
follows. 
the whole process  i s  quasi-steady and the burning ra te  follows the steady 
s ta te  law. If lo4  p s i / s ec  (dP/d t<lO7 ps i / s ec ,  relaxation t ime in the gas  
phase is s t i l l  negligible but it cannot be neglected in  the solid phase. 
d @ / d t )  10 ps i / s ec .  , relaxation t imes a r e  not negli ible in  either phase. 
Since we are  interested i n  the range d @ / d t  = 1041y10 
matical  problem is greatly simplified. 

- 
When 3 H 500psia, G1%l g / c m 2  sec .  , and i f  d P / d t  < 10 ps i / s ec .  , 

If 

% 
8 

p s i / s e c .  , our mathe- 

Fina 1 F o  r m ula t i on 

When x is large and G is s m a l l ,  t e r m s  containing D may not be neglected. g 
Far from the propellant surface,  a l l  other t e r m s  in  the energy equation be- 
come comparable with D 
predominates.  

Very far from the surface,  the nonsteady t e rm g' 
The energy equation (26)  reduces to, 

-14- 



T'/P'-~ = const. 

Thus, outside the flame zone, the P-T relationship is isentropic for all 
depressurizat ion ra tes .  If depressurization is very slow, the chamber 
t empera tu re  does not change; a succession of the steady s ta tes  is observed. 
This apparent contradiction is explained as  follows: The flame zone (zone 
of non-uniform temperature)  is different in  steady and nonsteady s ta tes .  
Consider a gas element which just emerges  from the propellant surface as 
depressurization s t a r t s .  The temperature of this element i nc reases  be- 
cause of i ts  own combustion and conduction. 
i nc rease  is sacrificed by the expansion work due to the depressurization. 
However, the chemical reaction zone is so  thin that the p r e s s u r e  has de- 
c r e a s e d  very l i t t le by the t ime the element has been completely burned. 
The temperature  of this element is a lmos t  adiabatic flame temperature .  
The t e m p e r a t u r e  of the element then decreases  a s  i t  expands. In a real 
motor  when the p re s su re  change i s  slow, the gas element has left the ex- 
haust nozzle before the temperature o r  p r e s s u r e  decreases  appreciably. 
Even i f  depressurization is fast ,  the temperature  a t  the end of the reaction 
zone is a lmost  adiabatic flame temperature.  Fo r  the purposes of this com- 
putation , transient additional heat losses  to the solid a r e  ignored although 
they a r e  undoubtedly significant. 

Some of the temperature  

T e r m s  associated with D also become comparable to  the other t e r m s  
nea r  the end of the depressurization process  when the burning ra te  becomes 
very small .  
have been determined. do not change. 
We therefore neglect all D 
end of the reaction zone is the adiabatic flame temperature .  
s ta te  equations (32)  and ( 3 3 )  a r e  then valid for nonsteady s ta tes  as well: 
F r o m  equation ( 3 4 )  we obtain, 

g 

By this t ime, however, the important features of the process  
The relative magnitudes of Ds and D g 

t e rms  and a s s u m e  that the temperature  a t  the 
g The steady 

where  A G  is an  increase in G due to acceleration of the gas.  
therefore  a s sume  that G i s  a function of t ime only and equation (25)  can be 
r em oved. 

We may,  

Now i t  i s  m o r e  convenient to u s e  a new space coordinate defined by, 

and  

in  the gas phase 

in the solid phase. 

Equations ( 3 L )  and ( 3 3 j  can now be writ ten 

-15 - 



l -  

where 

and  

Boundary conditions for  ( 4 0 )  and (41) a r e  given by equations (28)  through (31). 
In the solid phase, Ds is of the order one; hence the energy equation (35) or  
( 3 6 )  remains the same .  

S 0 L U  TI ON 

Gas Phase Equations 

In the gas phase equations (32 )  and ( 3 3 )  can be used a t  each instantaneous 
t ime. 
pendent, the solution is  different from that of the steady state.  

However, because the boundary conditions a t  the surface a r e  t ime de- 

The general  solution of equation (41) is  given by, 

h = C 1 t  C 2 e y  . 
Since h < m a t  "I= "0, 

1 '  
h = C  

= O a t  = "0, and 1 No r e v e r s e  reaction is considered; m 

0 

f .  C = h m = T m t m  h = T  1 l"0 

Hens e,  
Tf - T 

m =  
Aho 

Substitution into equation (40) yields, 

- d2T - -  dT d ? + $  1 (Ti T - $ n  exp( -E /T)  = 0 
d v2 

( 

( 4 3 )  

-16- 



where  

I 
We define the new variables ,  

dT 

=3i 
and  

4 = T f - T .  

P , - - I  

Then equation (43) reduces to a f i rs t  o rde r  differential equation. 

The  boundary conditions of equation (44) a r e  

y = o  a t t = O  

a t [ = T  - 1 .  Y = Y o  f a n d  

The value of y 
profiles satisfy equation (30) .  
ficient" which satisfies two boundary conditions simultaneously in  the solu- 
tion of the f i r s t  o rde r  differential equation (44). This gives us  a functional 
relationship between yo and X,  i. e . ,  yo - - f ( X ) .  Two techniques were  used to 
solve equation 

is determined such that the gas and solid phase temperature  
0 If yo is  specified, X i s  a "connecting coef- 

(44), a finite difference method and a n  asymptotic method. 

Finite difference method. 
equation (44) from 4 = 0 to  4 = Tf - 1 by a finite difference method. 
since the point 4 = 0, y = 0 i s  singular, the finite difference method fails i n  
i t s  vicinity. 
the vicinity of 4 = y = 0,  equation (44) becomes, 

Assume the value of A is given. We integrate 
However, 

In It is ,  therefore,necessary to find a n  asymptotic solution. 

where 2 n  
B = exp ( -E /Tf ) /A  T f  . 

T h r e e  different asymptotic solutions a r e  obtained for different values of n. 

. 
-17 - 
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I *  

n 
In this case,  4 /y)> 1, and equation (45) becomes 

The solution is, n t l  

n t l  

Consider the flame thickness. 

Hence, the tempera ture  achieves its final value a t  a finite distance from the 
pr  opellant surface.  

b) n = 1, 

n 
In  this case ,  4 / y  5 1, and equation (45) becomes, 

The solution i s ,  

y = c .  

The constant C i s  determined by substituting dy/dc = C and y = Cf into 
equation (45). The resu l t  i s ,  

C = - 0 . 5  t 0 .5  (lt4B . 
Hence, the asymptotic solution i s  given by 

-1 t J 1  t 4B 
Y =  2 4 .  (47) 

The asymptote i s  given by a curve on which dy/dC = 0. 
i s ,  

Hence, the asymptote 

y = B E n  . (48) 

In the smal l  interval  0 44 <e1, the solution i s  approximated by the 
asymptotic solutions. 

fur ther  integration can be performed by the finite difference method with a 

41 should be selected so  that i t  i s  smal l  enough so  that 
the a ~ ~ ~ - p t ~ t i c  ~ ~ 1 u t i o - s  1:~ good z p p r ~ ~ k ~ t i ~ ~ ~ ,  Ziit large eiioligli 60 t ' r l~ i  
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reasonable  s tep  size.  
Tf - 1, the equation was integrated by the Cutta-Runge method with automatic 
e r r o r  control.  
and Awy, relationships were  obtained. 
given in  Appendix 1 for  reference.  

F o r  n (1, 41 mus t  be very small .  F rom 41 to 4 = 

The computations were  performed for various values of X 
A sample FORTRAN program is  

In the steady s ta te ,  the solid phase tempera ture  profile is given by 
the solution of equation (37).  The resul t  i s ,  

T = T. t (1-Ti) e YS . 
1 

Hence, y is given by, 
0 

C - t Ah = - (1 - T.)  t Ah . 
w c  1 W yo - c P q s , w  

P 

(49) 

Since A i s  a function of yo and hence a function of the propellant propert ies  
only, the steady s ta te  p re s su re  burning r a t e  relation is  given by A = constant. 
Hence, 

n/2 G = P  . 
Thus, the present  model produces Viell ie 's  steady s ta te  equation. 
thermodynamic propert ies ,  t ransport  propert ies  and chemical kinetic data 
were  known, burning r a t e s  c ould presumably be calculated. However, burn- 
ing r a t e  data a r e  m o r e  plentiful than kinetic data. 
the p r e  -exponential coefficient K by using, 

If all 

We evaluate the value of 

n -on-1 c2T R h l w  K =  

Using the property values l is ted in Table 1, K was evaluated for n = 1. 
resu l t s  a r e  shown in Table 2 .  

The 

TABLE 2 

MAGNITUDE O F  PREEXPONENTIAL TERM 

IN THE RATE EQUATION, K 

K(l /sec.  ) 
W 

E h 

5 . 5 6  

11.12 

- 0 . 2  
0 .  
c!. 2 

- 0 . 2  
0. 
0.2 

8 0.148 x lo8 
0.245 x lo8 

8 4. 70 x lo8 
6.35 x 10 
8. 1 5  x lo8 

n 2 ~ 7 - .  i n  
V .  2 1 1  A I W  



They a r e  in  reasonable agreement with the values proposed by other in -  
v e s t i g a t o r ~ ~ ~ .  F o r  reference the steady s ta te  temperature  and csr,centra- 
tion profiles in the gas phase f o r  n = 1.0, E = 5.56 a r e  shown in figure 1. 
The physical dimension was computed using property values in Table 1 and el = 1.0 g / s e c . c m  2 . 

Asymptotic method. 
F o r  a sma l l  value of X, the flame isthinand y is la rge .  Hence, dy/dc )) 1. 
Then equation (44) is reduced to, 

We seek the asymptotic solution for sma l l  values of X. 

2 1 a) = exp( -E / (Tf -e )  ) . 
de X2(Tf-E)n 

Integrating equation (52) from 4 = 0 to 4, one obtains, 

It can thus be seen  that y +  1 / X  a s  X + O .  
pans ion : 

This suggests the following ex- 

(54) 
2 

y =(l/X)(AO + AIX + A  X + . . . ) . 2 

Substituting equation (54) into equation (44) and equating the s a m e  o r d e r  t e r m s  
of X on the left and right hand sides, one obtains, 

P 4 

etc.  



If the integrations a r e  performed from 4 = 0 to = T - 1 = 4 , one obtains y . 
f 0 0 

The asymptotic expansion w a s  performed for sma l l  values of A because the 
burning r a t e s  during depressurization were  exDected to be sma l l e r  than the 
steady state burning r a t e s  a t  the corresponding p res su res .  
TRAN program for the computation of A o ( t O ) ,  A1(c0), etc. , is given i n  Ap- 
pendix 2. 
the f i r s t  five t e r m s  were  retained. 
d n  /dT  = l / y  is numerically integrated once with respect  to 4 .  

A sample FOR- 

The asymptotic se r ies  (55) produced the best  approximation when 
Tempera ture  profiles can be obtained i f  

F o r  mos t  of our computations, the asymptotic method was used to ob- 
tain Auy,  relationships. 
the number of t e r m s  which should be retained in equation (55) for the best  
approximation. 
The A d y o  relationships thus obtained a r e  shown in Figures  2 and 3. 

The finite difference method was used to determine 

The approximations were  good i n  the range of our interest .  

Combining equations (31) and ( 5 5 ) ,  one obtains 

5 2) = G y o - G A h  , c ax s , W  W 
P 

where A A etc. a r e  evaluated at  4 . 

Let 

0' 1 0 

2 
F ( A )  = A. t (A1-4hw) A t AZA t . . . 

Then equation (56) may  be written, 

c Ao - - E) = F ( A )  . ( 5 7 )  

Since F ( X )  i s  known, equation (57)  can be solved for A ,  i f  
Then the burning ra te  G can be computed by, 

i s  given. 

The relative burning ra te  Gr i s  the rat io  of the t ransient  burning ra te  to the 
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steady r a t e  a t  the corresponding p res su re .  

I - -  We can now obtain a bit of useful information by considering an ex t reme 
Since the r e -  ca se .  

sponse in the solid is relatively slow, the tempera ture  profile in the solid, 

and, hence - 
is a positive number and F ( X )  decreases  monotonically. 
p r e s s u r e  dec reases ,  X must  decrease.  The t rans ien t  burning r a t e s  a r e ,  
therefore ,  sma l l e r  during depressurizat ions than the steady r a t e s  at c o r r e s -  
ponding p r e s s u r e s .  The burning r a t e  becomes ze ro  when the chamber p r e s -  
s u r e  reaches ,  

Suppose that a motor  were depressur ized  infinitely fast .  

A O  
remain  the same  a s  they were  in  the initial s ta te .  w, 

Therefore ,  a s  the 

Solid Phase Equations 

We seek the solution of equation (35) or (36). If G i s  a given function 
of t ime, a unique solution i s  obtainable without the boundary condition (31). 
We seek the solution of equation (35 )  or (36) with the appropriate  function G 
which satisfies equation (31), hence equation (57). Several  schemes can be 
used  to solve this problem. 

Finite difference method. 
tion d the parabolic type, it can be solved numerical ly  by the finite difference 
method s tep by s tep along the time coordinate. 
each s t ep  by iteration. 
sma l l  t ime interval for each step to  ensure  stability, especially when G be- 
comes small .  More than 10 
from P = 1. 0 to P = 0. 01. 
and allows the use  of l a rge r  time intervals ,  but requi res  a m o r e  elaborate  
i teration process .  

Since equation (35) i s  a par t ia l  differential equa- 

G has  to  be determined a t  
The explicit finite difference method requi res  a very 

steps a r e  requi red  to cover the p r e s s u r e  range 
The implicit method el iminates  the stability problem 

3 

Similar  solution method. When G i s  given a s  

G = l/(C,t + C2) 112 

equation (35) becomes a n  ordinary differential 

a function of t ime, e.  g. , 

9 

equation of the form,  

f l *  t (1 + 0.5C1Ds) f '  = 0 

112 where 
# = f ( y )  , = - x q t  t c2) , 8 = (T - T . ) / ( T ~  - T ~ )  . 

1 

The solution i s  

f = JTxp ( - (  p 0. 2 5 c p s  "I' ) ) d V .  + 1  J 

' 0  I 
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1 

m 

A = - 1 9  exp ( -  7 - 0 .  25C1Ds72) d 7 . 
0 

This solution sat isf ies  the boundary conditions a t  x = o and x = -0. The 
init ial  condition can be satisfied by putting C1 = 0. I t  is possible to u s e  
this solution in the sma l l  interval and determine constants C1 and C2 so  
that equation (31) is satisfied a t  each t ime  step.  Different C1 and C2 mus t  
be used  for each t ime interval.  
the necessa ry  range of pressure,  i f  the convergence of the p rocess  is 
proved. 

This  procedure can be repeated to cover 

Integral  method. 
with t ime,  the integral  method may produce a good approximation to the 
solution of equation (35). The temperature  profile may  be a s sumed  in  a 
polynomial form satisfying certain boundary conditions. F o r  example, i f  
one imposes the following boundary conditions 

If the temperature  profile in  the solid changes smoothly 

one obtains, 

where  

a t  

a t  

8 

F r o m  equation (57 )  

Eliminating t from 
x = 0, one obtains, 

equation (35) and  (38) and integrating from x = -mto 

C 
dg pn'2 ( 9 F(X) - X) . 0.25 - ( r G - P ) -  = -  - S 

D 

1 - r  dP  X O  1 - T i  c 

Elimination of 8 from equations ( *Xc)  and (***) gives a n  ordinary differential 
equation for  k with respect  t o  P. 
non-similar temperature  profile requir ing satisfaction of equation (57) as a 
boundary condition. The disadvantage of the integral  method is that the a c -  
curacy is known only when the resul t  is compared with the exact solution. 

Instead of equation (*), one m a y  u s e  a 
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Moving heat sou rce  method. 
solve equation (36). 
out computing the t empera tu re  profiles in the solid. 
with a moving boundary. T o  satisfy the boundary condition a t  the moving 
propellant surface,  moving heat sources  a r e  distributed along the t r a j ec -  
tory of the surface on the x,.,t plane (figure i). 
tion of the x-coordinate is reversed s o  that the positive direction is directed 
toward the solid phase. 

This method is used  in the present  study to 
With t h i s  method burning r a t e s  can be ebtained with- 

W e  solve equation (36) 

For convenience the d i r ec -  

The whole x-space ( - - t o  too )  is used. 

and 

init ial  t em Deratu 

t t 

Figure i 

We define the t ime and temperature  sca l e s :  

7 = t / D  
S 

T - Ti 
8 =- 

1 - T i  

r e  profile 

-24-  



Equation (36) then becomes, 

with the boundary condition, 

e = I  on S. 

The initial t empera tu re  profile in the whole x-space is given by, 

-X 8 = e  
0 

a t x  7 0 

e = i  a t x <  0 
0 

where  e#n x ( 0  i s  somewhat a rb i t r a ry .  
tage which will be explained la ter .  
data 0 i s  given by, 

This choice has  a cer ta in  advan- 
The solution of equation (60) with initial 

0 

e a i: eo ( X I )  K1(xI x ' , ~  , 0 )  d x '  (61) 
I 

2 
(x-XI ) - 
4 ( T - T 1 )  

e 
K1(Xl XI, 7, 7 ' )  = 

where  

The r e su l t  of integration is ,  

2 T-X 
8 = 0 . 5  + 0 .  S$-")-O. 5 erf  - 

2 F  2 F  
a 

To satisfy a boundary condition on the propellant surface,  i. e .  , 8 = 1 on SI  a 
moving heat source with the strength 0 ( T )  is distributed along S. 
heat sou rce  f(x, T)  is distributed on the X-T plane, the t empera tu re  profile is 
given by the solution of, 

If a point 

= f (X ,  7) . ae a2e - - -  
a7 2 ax 

The solution is given by using Green 's  function. The resul t  is given by, 

If the heat source is concentrated on the curve S, one m a y  wri te .  

- 2 5 -  



where  6 ( X I ,  TI) is Diracls delta function. 
one obtains, 

Substituting equation (65) into (64), 

where  ( X I ,  7' )  is on curve S. 
-*ex <*. except on S, where ae/ax has  a discontinuity. 
t ion (63) f rom X I -  E to x' t E ,  and letting E 3 0 ,  and using equation (65), one 
obtains, 

Equation (64) satisfies equation (60) in t > 0, 
Integrating equa- 

where  

and 

Thus,  the strength of the heat source i s  equal to the temperature  gradient 
in  the solid a t  the propellant surface.  
of 8, in x ( 0  and the position of the heat source a r e  a r b i t r a r y .  
of our par t icular  choice is the simple relationship between 0 and a@ 
p r e s s e d  in  equation.(68). Along curve S, 8 = 1: 
hence, equation (64) becomes, 

A s  was s ta ted before, the distribution 
An advantage 

ex - 

where  points ( X I ,  TI) and (x , T ) a r e  on S.  
su r f ace  i s  given by, 

The t ra jectory of the propellant 
s s  

Equation (69) is a n  integral  equation for 0 (Voltera 's  integral  equation of the 
2nd kind) if G is a known function. 

E) ox s , w  
equation (69). 
equations (69) and  (70) by finite difference equations and solve this equation 

G i s  determined such that 0, hence, 

and G satisfy the surface energy balance equation (57) as well as 

T o  do this,  we approximate the t ime derivative and integral  in 
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along the t ime coordinate. The procedure i s  described in  the next section. 

Numerical Procedures  

At T = 0, xs = 0, and G = P = 0 = 1. Suppose Cy P, 0 and  xs are known 
Denote G(Tm), P(Tm), 8 ( ~ ~ )  and x ~ ( T ~ )  by Gmy Pm, Qm,  and x S I m .  a t  Tm- 

Then Gm+l, Pm+l, gm+l and xs, m+l a r e  determined i n  the following way. 

Equation (69) is integrated in two par t s ,  from T = 0 to T = Tm and from 

T~ to Tm+l .  The la t ter  integral  i s  approximated by, 

, X I ,  T ~ ,  7') dr '  . 'm + 'm+l 
2 

Assuming constant G from T to T 
m m + l '  

X = x  + G AT 
s , m t l  s , m  m 

Then the above integral  is explicitly obtained a s ,  

Equation (69) becomes, 

XI, T 7'4 ( 7 ' )  ds '  . (72)  -.Io K1(Xs, ni +I' s ,  m+l' 

The integral  on the right hand side of (72) can be evaluated numerically.  
gm+l can be obtained from equation (72) .  
tion as ,  

Then 
is given by the ball ist ic equa- 

pm +1 

where  

Pm+l = Pm + 4P . 
D 
S A P  =- ( r G  - P) A T  1- r  

(73) 



Combination of equations (57) and (68) gives, 

Since the right hand side of the equation (74)  i s  a known function, equation 
(74)  can be solved for X Then Gmtl i s  given by, m t l '  

- 'm+1 n12 
' r n t 1 - T  p m t l  (75) 

In the actual computation, the solution of equation (74)  for X m + l  was simplified 
by a p r io r i  determining the inverse function of F ( X )  in a polynomial form by 
the l ea s t  squares  approximation. Thus,  

where X o  - 
n / 2  
m t l  

C a - - - (1 - Ti) Bmtl p m t l  c 
P 

2 and -1 F (a)  = B t Bla t B2a t . . . 0 

Ninth o rde r  polynomials were  used for F- '(a) with satisfactory accuracy .  
To improve the accuracy  of the computation, a pred ic tor -cor rec tor  method 
was used.  This method i s  briefly explained in the following paragraph.  

F i r s t  the procedure i s  applied to the interval between T~ and rC = rmt  
A712 to obtain Gc = G(rC) ,  Pc P ( T ~ ) ,  xs ,  
Gm in  equation (71) and (72) i s  replaced by Gc. 
proved by replacing Pm, G, by Pc and Gc in equation (73) .  
procedure i s  exactly the same.  

= x S ( r c )  and 0, = 0 ( T ~ ) .  Then 
The computation of A P  i s  i m -  

The rest of the 

The evaluation of the integral 

m u s t  be done with high accuracy, particularly in  the vicinity of rm, because 
K1 approaches infinity a s  T '  approaches Tmtl .  This integral  was approximated 

by D 
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m -1 
c 

n-1 
@n+@n+l I exp t- - I 

where  

and 

A X = X  - X  , 
n t l  n 

A T = T  - r  . 
n t l  n 

d r  

The integral  in  the above equation was evaluated by Romberg ' s  method with 
a relative e r r o r  l e s s  than One might suppose that 
the requirement  of g rea t  accuracy i s  not justified since the approximation 
in  the above equation with respect to  0 may produce a l a rge r  e r r o r .  How- 
eve r ,  one may  interpret  (0, + Q,+1)/2 to be the exact value o f 7  = @ (T  + AT), 

n where  1) a) 0, such that,  

f o r  each interval.  

A s  the computation proceeds,  d P / d r  becomes sma l l e r .  If the s a m e  t ime 
interval  i s  used for the en t i r e  computation, undue computer t ime is used a s  
P approaches zero: Therefore,  in  our computation a fixed A P was used 
and AT was computed by equation (73). To determine the s ize  of A P  which 
produces enouth accuracy,  the computation was f i r s t  c a r r i e d  out with e r r o r  
control on G. After the appropriate A P  was established, the e r r o r  control 
was removed for computer t ime economy. 
the computation is shown in Appendix 3 .  

The FORTRAN program used for 

Quench Limits 

Quench l imits  can be obtained from burning ra te  computations. 
the burning r a t e  becomes ze ro  at a non-zero chamber p r e s s u r e ,  the motor  
i s  said to  have quenched. 
r a t e  through the expanded nozzle, the chamber p r e s s u r e  s t a r t s  to inc rease .  
The  r e su l t  is a burn-out. 
burning ra te  depends only on D, and P2/P1. The quench l imit  thus becomes 
a line on the DS-P2/P1 plane. 
the cr i t ical  depressurizat ion parameter  Dsc. Dsc is z e r o  a t  P2 /P1  = 0, and 
infinity a t  P2/P1 = 1. 

Resul ts .  
a r e  l is ted i n  Table 3 .  

When 

If the burning r a t e  becomes equal to the m a s s  flow 

F o r  a par t icular  propellant the behavior of the 

W e  call  the value of Ds a t  the quench l imit  

Input data for  the computations done on a CDC 6600 digital computer 
Comparison of problems I, 11, and I11 gives the effects  

entha1p-f -4 --I= u....ru n n v a  _-_____. tinn Cnmparison of I1 and IV gives the effects of 
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the gas phase activation energy. 
fects of the gas phase reaction order o r  the p r e s s u r e  exponent of the steady 
s ta te  burning ra te .  
pract ical  u s e  because the depressurization ra tes  needed to quench in  such 
c a s e s  a r e  so  l a rge  that they can be achieved only with very sma l l  chamber 
f r e e  volumes. The burning rates  w e r e  calculated in  a s e r i e s  of computer 
experiments.  
a t  various r a t e s ,  given by Ds, at each of a number of p r e s s u r e  rat ios  given 
by Pz/P1 until a quench was observed. 
"firing" was about three minutes.  
each l imit  curve.  
when Ds was small .  
fixed a t  .005. 
This  causes  a numerical  instability. 
m e t e r ,  DSC, is sma l l  when n is large.  
t e rva l  is required.  
integration of equation (76)  i s  insufficiently accurate .  

Comparison of 11, V and VI gives the ef- 

Computations for l a r g e r  values of Pz/P1 a r e  of l i t t le 

F r o m  a given start ing condition, the engine was depressurized 

The computer t ime required for each 
Approximately 20 runs w e r e  needed for 

In our computations, the p r e s s u r e  interval,  A P ,  was 
Instability in  numerical  computations was experienced 

When Ds is small ,  the associated t ime interval  is la rge .  
The cr i t ical  depressurization para- 

If n > 1.4, a sma l l e r  p r e s s u r e  in-  
Numerical instability a l s o  a r i s e s  i f  the numerical  

TABLE 3 

INPUT DATA 

n(or  2m) E H W p2/p1 Problem 

I 1.0 5.56 -0.2 0. 05, 0.1, 0.2 

1 . 0  5 . 5 6  0. 0.05, 0.1, 0 . 2  I1 

I11 1.0 5.56 t o .  2 0.05, 0.1, 0.2 

IV 1. 0 1L 12 0. 

V 1. 2 5.56 0. 

VI 0.8 5.56 0. 

0.1, 0.2 

0.1, 0.2 

0.1, 0.2 

Computed t ransient  burning r a t e s  a r e  plotted against  chamber p r e s s u r e  
i n  Figures  4 through 18. 
lower portions show the detailed behavior near  the end of the depressuriza-  
tion process .  
seen. If a burn-out occur s ,  the computation stops when the burning r a t e  
curve reaches the nozzle m a s s  flow ra te  curve.  At this point, d P / d t  be- 
comes  zero.  
Our p r e s s u r e  interval was not small  enough to show this trend. 

The upper portions show the overall  pictures.  The 

The  distinction between a quench and a burn-out can be clearly 

The burning ra te  curve should thus be vertical  on a G u P  plane. 

Transient  burning r a t e s  were always lower than steady burning r a t e s  
a t  corresponding p r e s s u r e s .  
The differences a r e  s m a l l  a t  the beginning of the depressurization; they be- 
cnma m o r e  pronounced as  depressurization proceeds.  Figure 19 shows this 
c lear ly  . 

When Ds was large,  the reduction was g rea t e r .  
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. 
Typical chamber pressurervt ime curves a r e  shown in Figure 20. 

The physical t ime  scale  was cnrnpl_?ted from propellant data in Table 1 and 
GI = 1 g / c m  sec .  In a burn-out, the chamber p r e s s u r e  will cl imb back 
up to P 2 .  The resu l t s  indicate that the relative burning r a t e  i s  sma l l e r  
for  a sma l l e r  value of P,/Pl, a sma l l e r  value of Ahw, a s m a l l e r  value 
of E and a l a r g e r  value of n. 

2 - 

These data were  used to  construct quench l imit  curves  on the Dsd 
P 2 / P 1  plane. 
r ep resen t s  one computer experiment. The t rend of the curves is a s  an -  
ticipated, i. e . ,  the cr i t ical  depressurization pa rame te r  Dsc (or  depres-  
surization r a t e )  is ze ro  a t  P2/P1 = 0 and infinity a t  P2 /P1  = 1. 
values of P2/P1, DSCts  a r e  almost directly proportional to P2/P1. 

The  resu l t s  a r e  shown in Figures  21 through 26.  Each point 

Fo r  small 

The quench l imit  is determined by two factors .  
response of the solid to a n  imposed p r e s s u r e  disturbance. 
is the boundary condition imposed by the motor configuration. The effect 
of P2 /P1  is found mainly in  the second factor.  
the c r i t i ca l  depressurization parameter  dec reases  a s  A &  dec reases ;  the 
propellant i s  ea s i e r  to quench when the su r face  reaction is exothermic.  
The cr i t ical  depressurizat ion parameter  a l s o  dec reases  a s  the activation 
energy of the gas phase reaction decrea.ses and  a s  the reaction o rde r  in- 
c r e a s e s .  Dependence of Dsc on n is very strong. It should be kept in 
mind  that Ds depends not only on d P / d t  but a l s o  on cl. Therefore ,  i t  is 
somet imes  misleading to say that a propellant is easier  to quench, when 
Dsc is sma l l e r .  
different values of E but have the s a m e  value of El, they a r e  supposed to 
have different values of p re -  exponential coefficients of the r a t e  equation. 

The f i r s t  is the 
The second 

A l l  other things being equal, 

It should a l so  be noted that when two propellants have 

Discussion 

2 
Comparison with experiments.  
observation that burning r a t e s  during depressurizations a r e  lower than 
steady r a t e s  a t  the s a m e  p res su res .  

The present  theory ag rees  with Ciepluch's 

The cr i t ical  depressurization pa rame te r s  computed a t  P2/P1 = 0.1 
a r e  i n  the range of 0 .5  -30 
in table 1 and 
responding cr i t ical  depressurization r a t e s  P It' (dP /d t  a t  the beginning of t i e  
p r e s s u r e  t ransient)  a r e  in  the range 0 . 4 2 ~ 1 0  4 2 5 x 1 0  p s i / s e c .  Experiment- 
a l ly  observed" 
the range of 0. 5 ~ 1 0 ~ ~ 2 .  Ox10 
definition of depressurizat ion rate and  the fact that the values of ? /PI  in 
these  experiments a r e  probably lower than 0.1, the agreement  i s  good. 

If we a s s u m e  the values of p s  a n d r s  l is ted i = 1. 0 g / cm sec.  (a typical va1.e a t  FL = 500 psia),  the c o r -  

3 5 

cr i t ical  depressurization r a t e s  (defined by P l / t l / 2 )  a r e  in 
5 ps i / s ec .  If we consider the difference in the 

1 Ciepluch a l s o  reported that the c r i t i ca l  depressurization ra te  i s  nearly 
proportional to the initial chamber p r e s s u r e ,  and, therefore ,  the cr i t ical  
t ime  is near ly  independent of the initial p r e s s u r e .  
whose depressurization ra te  was controled by varying the vent nozzle a rea .  

His experiment used a motor 
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* 
Hence, P /P , t ,  and F a r e  related. 2 1  1 

v, Fl l-m (gm-l = l t C 1 x  - * 
P t  

where  V, is the chamber f r e e  volume, A 
a r e a  and C is a propellant constant. The definition of D is,  

is the propellant burning surface P 
1 S 

c2 

t P 1  

D =  
s *-2m (ii) 

where C2 is  a propellant constant. 
(ii) gives,  

Elimination of from equations (i) and 1 2m - 
c2 (F) l-m 

P (iii) 

( l t m )  / (1-m) 

1-m 
where  r = (P2/P1) 
a n d %  when depressurizat ion i s  imposed on the motor by a sudden opening of 
a vent. 
l imi t  curve on the Ds-P2/P1 plane which is consistent with Ciepluch's ex- 
per iments .  The r e su l t  a g r e e s  with the resu l t s  of this study (Fig.  27), but 
the present  theory goes one step fur ther .  If the quench l imit  curves  o n  the 
D s - P 2 / q  plane a r e  obtained for  the same  propellant but with different 
mo to r s ,  they fall on the s a m e  curve. 

. Equation (iii) gives the relation between P2/P1, D, 

If we substitute T =Tcrit  = const. into equation (iii), i t  gives a 

The  t rends of the effects of n, E and  Ahw on quench presented in  this 
study cannot be adequately compared with experiments a t  present.  
effects of propellant composition have been studied , we don't know enough 
about the relationships between composition and physical and chemical pro- 
per t ies .  
s ide r  a quenching experiment in  which two propellants with different values 
of n a r e  tes ted with the s a m e  motor and  a t  the same  initial p re s su re .  If we 
achieve the same depressurization r a t e  for both propellants, the result ing 
P2/P1 will be l a r g e r  for a propellant with a l a r g e r  value of n, 

Although 
2 

The present  theory predicts a strong dependency of D,, on n. Con- 
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c 

c 

DS 
n decreasing I 

P 1 experiment 

configuration 

p2 ' p1 

Figure ii 

i. e . ,  a high p r e s s u r e  dependence of the steady s ta te  burning ra te  makes a 
propellant ea s i e r  to quench (figure ii). 

No computation was performed for  the case  where the ambient p r e s s u r e  
is not ze ro .  
i n t e r sec t s  with P-axis. This tends to inc rease  Dsc. 'Extinguishment will 
not be obtained i f  the ambient p re s su re  i s  higher than P 

In this ca se  a nozzle m a s s  flow r a t e  curve on the G P plane 

in  equation (59). 
q ,  max 

Although a l imit  curve plotted on the d p / d t  plane is not uniquely 
determined by the propellant properties,  and a curve plotted on the Ds 
plane is m o r e  general  in the sense that i t  applies to a l l  motor geometries,  
neither approach is necessar i ly  appropriate i f  the depressurization ra te  is 
controled in  a different manner ,  for example, by controling the opening ra te .  
Thus, t he re  i s  no unique quenching l imit  curve for  a propellant. 

P2 /P1  

Improvement of the present theory. 
study is that of constant surface temperature .  
probably dec reases  slightly a s  the burning ra te  dec reases .  
relationship between the burning r a t e  and the surface t empera tu re  is  known, 
the present theory can accomodate this relationship with the following modi- 
fications. 

One of the crucial  assumptions in this 
The surface temperature  

If a functional 

hk 
We redefine T to be the initial surface temperature .  Tf is  assumed to 

s tay constant. 
placed by, 

Then yo i s  a function of A and Tw(t).  Equation (57)  is r e -  
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I ? 

c A O  a‘ 

I .- 

The function F ( X ,  T,) mus t  b e  a pr ior i  determined. 
expres s  F as F = F1(A)F2(Tw). 
u s e  the s a m e  initial data shown in figure i. 
tion i n  x 

It may be convenient to 

Since the temperature  distribu- 
To solve the solid phase equation (36), we 

0 is no longer uniform equation (68) does not hold and 

) has to b e  evaluated. Differentiate equation (64) with r e spec t  

to  x a t  (xs, T ~ ) .  The r e su l t  gives the ar i thmatic  m e a n  of - ;!)t and E,) . 
Thus , T 

ax 

- 
S 

(x -XI )  
S 

0.5(& tt($) - ) =% - [ K ( x  1 s  , X ‘ J  S , T I )  - 2 ( T s - T )  8 (7’) dT’ . 
‘ 0  

( 2 4  

Combination of equations (2a) and (67) gives the value of - a@”), a t  ( X S J  Tx).  

Suppose the computation has been completed up to T = T 

computation to T = T t AT. Compute 8 f rom,  

ax 

. We continue the m 
m t l  m w , m t l  

= f(Gm) w, m t l  
e 

where  8 = f (G)  is the surface temperature-burning r a t e  relationship. 
place the f i r s t  t e r m  (one) of the right hand side of equation ( 7 2 )  by 
Compute 0 (tm+l) in exactly the same way a s  we did with a constant surface 

Re-  

t empera tu re .  Replace 8 and F ( X )  by and F ( X ,  T ) in  equation’(74) 
W ax m +1 

and compute A The r e s t  of the procedures a r e  the same .  
m t l ’  

We did no computations involving varying surface temperature .  
eve r ,  we can speculate on the effect. 
take, experiments16 suggest that 8, i s  fairly constant up to a very s m a l l  
value of G. Then the burning ra te  curve on 
the G-P plane will differ l i t t le from that for a constant surface temperature  
until G = Ga. 
a lmos t  the s a m e  burning ra te  behavior. 
G > Gas the burning ra te  beharior a t  G < Ga may differ appreciably between 
the two models.  
that  we r ega rd  the firing to  be a quench i f  G becomes sma l l e r  than some 
a r b i t r a r y  sma l l  value Gc, a n d  i f  G C Z  Gay the resulting quenching l imits for 
both models a r e  about the s a m e .  

How- 
No matter  what form equation (3a) may 

Suppose e,= Ow, up to G = Ga. 

If a burn-out results before G reaches Gay both models predict  
If a burn-out does not occur a t  

However, if the c r i t e r ion  for a quench is established such 
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Another major  assumption made h e r e  i s  that t he re  i s  no chemical 
react ion in the solid. 
especially i f  the burning r a t e  i s  low. If a significant solid phase react ion 
occurs  near  the propellant surface,  we may t rea t  i t  a s  a sur face  react ion 
in a n  analytical model. We have considered exothermic,  neutral  and en-  
dothermic surface reactions in our t reatment .  
for the effects of solid phase reactions. 

It is quite likely that there  a r e  react ions in  the solid, 

This may account partly 

Finally, we have made the assumption of a constant adiabatic flame 
temperature.  Actually, during the p re s  s u r e  transient,  the flame t empera -  
t u r e  will decrease  somewhat because of redistribution of thermal  energy 
within the combustion wave to  produce a flatter profile in the solid. 
sideration of this effect would make quenching somewhat e a s i e r  than i s  sug- 
gested by our resul ts .  

Con- 
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At 

V 
A 

C 

C 
P 

D 

D 
g 

DS 
e 

E 

G 

G 

h 

k 

K 

r 

e L 

m 

m 

m 

m 

P 

i 

t 

V 

- 
pa 

p2 
- 

R 
r 

t 

T - 
'i 

C 
V 

X 

pr imary  nozzle throat a rea  

vent nozzle throat a r e a  

specific heat capacity of propellant 

specific heat  capacity of the gas a t  constant p r e s s u r e  

di ffu s ion coefficient 

nondimensional parameter  defined on page 10 

depressurizat ion parameter  defined on page 12 

internal energy 

nondimensional activation energy in the gas phase 

nondimensional burning rate ( m a s s  flow r a t e / a r e a )  

relative burning r a t e  defined by equation (58) 

en tha 1 py 

therm a 1 c ondu c t ivi t y 

pre-exponential  coefficient in the r a t e  equation 

Lewis number 

p r e s s u r e  exponent of steady s ta te  burning r a t e  

m a s s  concentration of i's species 

m a s s  flow ra t e  through the p r imary  nozzle 

m a s s  flow r a t e  through the vent nozzle 

nondim ensional pres  s u r e  

ambient p r e s s u r e  

steady s ta te  burning p res su re  corresponding to A 

gas constant 

t A t v  

nondimensional t ime 

nondim ens ional t em per  a tu r e 

propellant ambient t em pera tu r e 

chamber f ree  volume 

nondim ens ional spa c e coordinate 

I- t! D 
X 
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I .- 8 

0 
nondimensional temperature defined on page 2 4  

nondimensional strength of heat source 

P density of the gas 

density of the propellant 
P S  

y specific heat ra t io  

A defined on page 17 

A 

4 ho 

A h  

A a t t = O  

enthalpy change in gas phase reaction (nondimensional) 

enthalpy change in  surface reaction (nondimensional) 

0 

W 

Superscr ipts  and Subscripts 

1 initial value 

S solid phase 

g gas phase 

w propellant surface 

- dim ens i onal quantities 

* nondim ensionalizing quantities 
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I .  

A P P E N D I X  1. A S A M P L E  FORTRAN PROGRAM FOR SOLVING T H E  

GAS PHASE EQUATION BY A F I N I T E  D I F F E R E N C E  METHOD 

Symbols  

Y = Y  
Y P R I M E  = d y / d t  

S 

TIN 

A C T  

CON 

R K  

Z 

C 

= 4  
= T f  

= E  

= 1 / x  

= library subrout ine  fo r  Cut ta  -Runge  m e t h o d  

= n  

N = 1, E = 5.56  

DIMENSION Y(1), Y P R I M E  (l), E R R l  (l), W ( 4 )  

COMMON CON, TIN., A C T  

E X T E R N A L  DERIV 

T A N F  (CON, TIN,  A C T )  = -0.5tO. 5*SQRTF( l .  +4.XcCON/TIN.FEXPF(-ACT/TIN)) 

P R I M E  F ( S ,  Y, CON, TIN,  ACT)=-1. +S/Y*CON/(TIN-S)*EXPF(-ACT/(TIN-S)) 

E R R l  (1) = 1. E - 9  

ERR2 = 1. E - 9  

NUMBER = 1 

H = 0 . 0 2  

T I N  = 3. 

A C T  = 5.56  

DO 21 I = 1, 60  

P = I  

CON = 60. t Z O . *  Ptl. 35*P*(P-l .  112. 

B1 = H*cTANF( CON, TIN,  A C T )  

B2 = H * P R I M E F ( H / 2 .  , R1/2. , CON, TIN, A C T )  

B3 = H * P R I M E F ( H / 2 . ,  B 2 / 2 .  , CON, TIN,  A C T )  

B4 = HXcPRIMEF( H, B3 , CON, TIN, A C T )  
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I .' 

. 

Y(1) = 1. /6.  * (B l t2 .  *B2+2. *B3tB4)  

s = 0 .02  

S F I N A L  = 0.04 

INIT  = 1 

C A L L  RK(S,  SFINAL,  Y ,  YPRIME,  DERIV, NUMBER,  ERR2,  ERR1, INIT,  W,  DX) 

INIT  = -1 

DO21 J = 1, 9 8  

S F I N A L  = StO.  02 

C A L L  RK(S,  SFINAL,  Y, YPRIME,  DERIV, NUMBER,  ERR2,  ERR1, INIT,  W,  KX) 

I F ( J - 9 8 )  30 ,  31, 32 

3 0  GO T O  21 

31 P R I N T  40, C O N , y ( l )  

40 F O R M A T  (2E20 .8 )  

GO TO 21 

32 GO T O  21 

21 CONTINUE 

E N D  

SUBROUTINE DERIV(S, Y,  YPRIME) 

DIMENSION Y(1), Y PRIME(1)  

COMMON CON, TIN,  A C T  ' 

Y PRIME(1)  = -1. tS/Y(l)*CON/(TIN-S)*EXPF( -ACT/ (TIN-S) )  

R E T U R N  

E N D  

E N D  
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APPENDIX 2. A SAMPLE FORTIIAN PROGRAM FOR SOLVING THE 

GAS PHASE EQUATION BY THE ASYMPTOTIC METHOD 

YO 

Sym bo1 s 

= A. 

Y4 = A4 

ACT = E  

TIN = Tf 

Z = n  

ROMZF = l i b ra ry  subroutine for numer ica l  integration 

C N = 1, E = 5.56 

DIMENSION Y(5,501), R(500) 

EXTERNAL FUNEV 

Y ( 1 , l )  = 0. 

Y(2, l )  = 0. 

Y(3, l )  = 0. 

Y(4, l )  = 0 

Y(5, l )  = 0 

SUMR = 0. 

z = 1. 

DO 2 I = 1,500 

P = I  

BOW = .004*(P-1. ) 

U P P  = .004*P 

CALL ROMZF(FUNEV, BOW, U P P ,  0.001, NN, VAL) 

R(1) = VAL 

SUMR = SUMR t R(I) 

u 3 TJ{!,I 1) = SQETF(SVMR) 

YO = Y(1, 501) 
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SUMR = 0. 

DO 3 I = 1 ,500  

R(1) = 0.  002*(Y(l,I) t Y(l ,  Itl)) 

SUMR = SUMR tR(1)  

3 Y ( 2 , I t l )  =4. *SUMR/Y(l , I+ l )  

Y1 = Y(2,501) 

SUMR = 0. 

DO 4 I = 1,500 

R(1) = 0 .  002*(Y(2, I ) t Y ( 2 ,  I t l))  

SUMR = SUMR + R(1) 

4 Y ( 3 , I t l )  = ( - 0 .  5*Y(2,1+1)**2-!3UMR)/Y(l,Itl) 

Y2 = Y(3,501) 

SUMR = 0. 

DO 5 I = 1,500 

R(1) = 0. 002*(Y(3, I)+Y(3, Itl)) 

SUMR = SUMR+R(I)  

5 Y(4,  I t l )  = (-Y(2,1tl)*Y(3, I i-1)-SUMR)/Y(l,  I+1) 

Y3 = Y(4,501) . 

SUMR = 0. 

DO 6 I = 1 ,500  

R(1) = 0 .  002*(Y(4, I ) f Y ( 4 ,  I t l))  

SUMR = SUMR+R(I)  

6 Y ( 5 , I t l )  = ( -SUMR-0.  5*Y(3,1t1)**2-Y(2,1+1)*Y(~4,I+1))/Y(1,1t1) 

Y4 = Y(5,501)  

P R I N T  7 ,  YO Y1, Y2, Y3, Y4 

7 FORMAT(SE20.  8) 

E N D  

FUNCTION FUNEV(X)  

A C T  = 5.56 

T I N  = 3 .  

z = 1. 

F U N E V  = 2. *X** Z / (TIN-  X) ** Z*EX PF( -A C T / (TIN-  X)) 

R E T U R N  

E N D  

E N D  -41- 
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APPENDIX 3 .  A SAMPLE FORTRAN PROGRAM FOR THE BURNING 

RATE COMPUTATIONS 

The program consists of the main  p rogram,  subroutine STEP,  sub- 
routine RV and function FX. 
in the main  program. 
n = C, 1 ,2 ,  , i s  done in subroutine STEP.  After the f i r s t  step,  the function 
of the ma in  program is to check the output of S T E P  and stop the computation 
i f  a quench or  a burn-out is reached. The c r i te r ia  for a quench and a burn- 
out a r e :  The sub- 
routine RV computes X from equation (74 ' ) .  
by l ib ra ry  subroutine ROMlF. 
in a small  interval.  

The computation from P = 1. 0 to 0 .98 i s  done 
The computation from 0.98-nAP to 0.98-(n+l)AP, 

G < 0.002 for a quench, d P / d r  > -0 .002  for a burn-out. 
The integral  (76) is evaluated 

1 The function F X  rep resen t s  the function K 

Sym bo1 s 

N 

T 

X 

G 

P 

DT 

DX 

DG 

D P  

BETA 

PHI 

RN 

RM 

RAMDA 

RAMDAS 

T E T F  

DELF 

R ESF 

ROMlF 

= number of steps 

=I-  

= x  

= G  

= P  

= dt 

= d x  

= dG 

= d P  

= G  r 
= Q  
= n  

= m  

= A  

= X  
0 

= 5  
= dP/dT 

= 1 - e  a 
= l i b ra ry  routine for numerical  integration 
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A sample FORTRAN program for a burning r a t e  computation 

C N = l . O  E = 5000°K, HS = 0. 

DIMENSION X(200), T(200), P(200), PHI(200), BETA(2OO), G(200) 

COMMON DS, SR,RM, RAMDAS, TA, TB, XM, TM, XA, XB 

EXTERNAL F X  

DELF(DS, SR, P, G, ) = DS/(l. -SR)*(SR*G-P) 

TETF(X, XO, T ,  TO, P A I )  = EXPF(-1. *(X-XO)**2/4. / (T -T0) ) /2 .  

~/SQRTF(PAI*(T-TO)) 

RESF(X, T )  = 0.5-0.5*EXPF(T-X)tO. 5*(ERFN(X/2. /SORTF(T)) 

l+EXPF(T -X)*ERFN((2. *T - X ) / 2 .  /SQRTF(T))) 

PAI=3.1415926535 

RN = 1.0 

RM = RN/2. 

RAMDAS = .21759453 

P(l) = 1. 0 

G(1) = 1. 0 

T(l)  = 0. 0 

PHI(1) = 1.0 

X(1) = 0 .0  

PR = 0.1 

SR = PR**(l. -RM) 

DS = 1.0 

l3P = -0 .02  

DP1 = 0.5*DP 

DT1 = -DPl/DS 

T1 = DT1 

P1 = 1.OtDPl 

CALL RV(l. ,  P1, RAMDA) 

G1 = RAMDA/RAMDAS*Pl**RM 

DT = DP/DELF(DS, SR, P1, G1) 

X(2) = Gl*DT 

P ( 2 )  = 1. OtDP 

T ( 2 )  = DT 

RES = RESF(X(2), T(2)) 

DSUM = 1. /Gl*ERFN(Gl*SQRTF(T(2))/2. ) 
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1 -  
I -  

- 

PHI(2) = RES/DSUM*2.0-1.0 

CALL RV(PHI(2), P(2), RAMDA) 

BETA(2) = RAMDA/RAMDAs 

G(2) = BETA(2)*P(2)**RM 

N = 2  

PRINT 5, N, P(2),  G(2), T(2) ,  BETA(2) 

5 FORMAT(I6,4E20. 8) 

D P  = -0.005 

11 NINT = N 

IF(197-NINT) 22,21,20 

20 

21 

22 

23 

3 0  

70 

31 

32 

1 

71 

3 

GO TO 23 

GO T O  500 

GO TO 500 

C A L L  S T E P  (N, T ,  P, X, G,PHI, BETA, DP, DPT) 

PRINT 5, N, P(N), G(N), T(N), BETA(N) 

IF(G(N)-0. 002) 30,30,31 

PQ = P(N) -G(N)*( P( N) - P(N-1)) / (G(N) - G ( N - ~ ) )  

PRINT 70 ,PQ 

FORMAT(4H PQ = E20.8) 

GO TO 500 

GO TO 32 

REMAIN = -0. OOZDPT 

IF(REMA1N) 1,1,3 

SL = 1. /SR 

SG = (G(N)-G(N-1)) / (P(N) - P(N-1) )  

GB = (G(N)-SG*P(N))/(l. 0-SG/SL) 

PB = GB/SL 

PRINT 71, G B , P B  

FORMAT (4H GB = E2O. 8,4H P B  = E Z O .  8) 

GO T O  500 

GO T O  11 

500 CONTINUE 

END 

SUBROUTINE STEP(N, T,  P , X ,  G, PHI, BETA, DP, DPT) 
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DIMENSION X(200(, T(200), G(200) ,  P(200), PHI!200), BETA(200) 

COMMON DS, SR, RM, RAMDAS, TA, TB,  XM, TM, XA, XB 

EXTERNAL F X  

DELF(DS, SR, P, G) = DS/(l. -SR)*(SR*G-P) 

OTETF(X, XO, T, TO, PAI) = -EXPF(-1. *(X-XO)**2/4. / (T -T0) ) /2 .  / 
lSQR T F (  PAI*( T -TO)) 

ORESF(X, T )  = 0.5-0.5*EXPF(T-X)tO.5*(ERFN(X/2. /SQRTF(T)) t  

lEXPF(T  -X)*ERFN((2. *T -X)/2. /SQRTF(T))) 

PIA = 3.1415926535 

DPT = DELF(DS, SR, P(N), G(N)) 

IF(DPT)  10,500,500 

10 DP1 = 0.5*DP 

DTl = DPl /DPT 

DXl = DTl*G(N) 

T1 = T(N)tDTl 

X1 = X(N)tDXl 

P1 = P(N)tDPl  

RES1 = RESF(X1, T1) 

M = N-1 

IF(N-2) 500,4,5 

4 TA = T(l) 
TB = T(2) 

XA = X(l) 

XB = X(2) 

TM = T1 

XM = X1 

VAL = ROMlF(FX, TA, TB, 9) 

SUM = VAL*(PHI(l)+PHI(2))/2. 

GO T O  6 

5 M M = M - 1  

SUM = 0. 

En 1 I = 1;MM 

TA = T(I) 
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T B  = T(I+l) 

XA = X(1) 

XB = X(I+l) 

T M  = T1 

XM = X1 

VAL = ROMlF(FX, TA, TB,  5) 

1 SUM = SUM+VAL*(PHI(I)+PHI(I+1))/2. 

TA = T(M) 

T B  = T(N) 

XA = X(M) 

XB = X(N) 

TM = T1 

XM = X1 

VAL = ROMlF(FX, TA,TB,  8) 

SUM = SUMtVA L*( PHI( M)+PHI( N)) ,’ 2. 

DSUM = 1. /G(N)*ERFN(G(N)*SQRTF(DT1)/2. ) 6 

PHI1 = (RESl-SUM)/DSUM*2. -PHI(N) 

CALL RV(PHI1, P1, RAMDA) 

GI = RAMDA/RAMDAS*R~**RM 

DT = DP/DELF(DS, SR, pi, GI) 

IF(DT) 11,11,12 

11 DPT = 0. 

GO TO 500 

12 DX = DT*Gl 

T(N+l) = T(N)tDT 

X(N+l) = X(N)+DX 

P(N+l) = P ( N ) t D P  

RES = RESF(X(N+l), T(N+l)) 

IF(N-2) 500, 7,8 

7 TA = T( l )  

T B  = T(2)  

XA = X(l) 

XB = X(2) 
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? . 

. 

T M  = T(3) 

XM = X(3) 

VAL = ROMlF(FX, TA, TB,  8) 

SUM = VAL*( PHI(l)+PHI(2))/2. 

GO TO 9 

8 M M = M - 1  

SUM = 0. 

DO 2 I = l , M M  

TA = T(l )  

T B  = T(I+l) 

XA = X(1) 

XB = X(I=l) 

TM = T(N+l) 

XM = X(N+l) 

VAL = ROMlF(FX, TA, TB,  5) 

2 SUM = SUM+VAL*( PHI(I)tPHI(It1))/2. 

TA = T(M) 

T B  = T(N) 

XA = X(M) 

XB = X(N) 

T M  T(Nt1) 

XM = X(N+l) 

VAL = ROMlF(FX, TA, TB,  8) 

SUM = SUMtVAL*)PHI(M)tPHI(N)) /  2. 

DSUM = 1. /Gl*ERFN(Gl*SQRTF(DT)/2. ) 

PHI(N+l) = (RES -SUM) / DSUM*2. -PHI( N) 

CALL RV( PHI(Ntl), P(N+l), RAMDA) 

BETA(N+l) = RAMDA/RAMDAS 

G(Nt1) = BETA(Ntl)*P(N+l)**RM 

N = N+l 

9 

500 RETURN 

-_ l7N _n 

SUBROUTINE RV( PH, P ,  RAM) 

COMMON DS, SR, RM, RAMDAS, TA, TB,  XM, TM, XA, XB 
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Z = PH*O. 4*RAMDAS/P**RM 

A 0  = 0 .49806528EtOl  

A1 = -0 .28204058Et03  

A2 = 0. 751474853+04 

A 3  = -0.116177853+06 

A 4  = 0.1137542OEtO7 

A5 = -0 .73028185Et07  

A6 = 0.307254073+08 

A 7  = -0 .81693743Et08  

A 8  = 0.124577773+09 

A9 = -0 .83034562+08 

R A M  = A 0 t A 1* Z +A 2 * Z ** 2 t A 3 * Z * * 3 t A 4 * Z *yA 4 +A 5 * 2 ** 5 t A 6 * Z * * 6 t 

1A7* Z**7+A8*Z**8tA9 * Z**9 

R E T U R N  

E N D  

FUNCTION F X ( T 0 )  

COMMON DS, SR,  RM,  RAMDAS, TA,  "€3, XM, T M ,  XA, X B  

PA1 = 3.1415926535 

F X  = E X P F (  -1. *(XM-XA - (XB-XA) / (T B- TA)*( TO-TA))**z /4. / (TM-1TO))  

/ 2 .  / S Q R T F (  PAI*( TN-TO))  

R E T U R N  

E N D  

E N D  
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Figure 4. Variation of burning ra te  with p r e s s u r e  during depressurizat ion at  
various depressurizat ion r a t e s .  
the gross  effect. 
hand corner .  
flux through the expanded nozzle. 

The upper par t  of the figure shows 
The lower par t  is a detailed view of the lower lef t  

The straight l ine originating a t  the origins i s  the m a s s  
n = 1, E = 5.56, 4hw = U, P2iP1 = 0 . 0 5 .  
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Figure 5. Variation of burning rate with p r e s s u r e  during depressurization a t  
various depressurization r a t e s .  
the g ross  effect. 
hand corne r .  
flux through the expanded nozzle. n = 1.0, E = 5.56, Ahw = 0, 

The upper pa r t  of the figure shows 
The lower pa r t  i s  a detailed view of the lower lef t  

The straight line originating a t  the origins is the m a s s  
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Figure 6. Variation of burning ra te  with p re s su re  during depressurization a t  
various depressurization ra tes .  
the gross  effect. 
hand c o r n e r .  
fiux through the expanded nozzle. n = 1. u,  fi - J. J U ,  ( m i  

P IP = 0.2.  
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Variation of burning r a t e  with p re s su re  during depressurization a t  
various depressurization r a t e s .  
the gross  effect. 
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flux through the expanded nozzle. 
P /P1 = 0.05. 

The upper par t  of the figure shows 
The lower par t  is a detailed view of the lower left 
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Figure 9. Variations of burning rate with p r e s s u r e  during depressurization a t  
various depressurization r a t e s .  The upper par t  of the figure shows 
the gross  effect. The lower par t  i s  a detailed view of the lower left 
hand corner .  
flux through the expanded nozzle. n = 1.0, E = 5.56,  Ah = -0.  L, 
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Figure  10. Variations of burning r a t e  with p r e s s u r e  during depressurization at  
various depressurization r a t e s .  The upper par t  of the figure shows 
the gross  effect. The lower par t  i s  a detailed view of the lower lef t  
hand corner .  
flux through the expanded nozzle. 
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Figure 11. Variations of burning r a t e  with p r e s s u r e  during depressurization a t  
various depressurization r a t e s .  The upper par t  of the figure shows 
the gross  effect. 
'nand co,-I,e:T. 

flux through the expanded nozzle. 

The lower par t  i s  a detailed view of the lower left  
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Figure 12. Variations of burning r a t e  with p r e s s u r e  during depressurizat ion a t  
various depressurization ra tes .  The upper par t  of the figure shows 
the gross  effect. The lower par t  is a detailed view of the lower left 
hand corner .  
flux through the expanded nozzie. 

The straight line originating at  the origins i s  the m a s s  
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Figure  13. Variations of burning r a t e  with p r e s s u r e  during depressurization a t  
various depressurization ra tes .  The upper par t  of the figure shows 
the g ross  effect. The lower pa r t  is a detailed view of the lower left 
hand co rne r .  
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Figure 14. Variations of burning r a t e  with p r e s s u r e  during depressurization a t  
various depressurization ra tes .  The upper par t  of the figure shows 
the gross  effect. The lower par t  i s  a detailed view of the lower left 
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flux through the expanded nozzle. 
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Figure 15. Variations of burning ra.te with p re s su re  during depressurization a t  
various depressurization ra tes .  The upper par t  of the figure shows 
the gross effect. The lower p a r t  i s  a detailed view of the lower left 
hand corner .  
flux through the expanded nozzle. n = 0 .8 ,  E = 5.56, A h  = 0, 
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Figure 17. Variations of burning r a t e  with p r e s s u r e  during depressurization a t  
various depressurization r a t e s .  The upper pa r t  of the figure shows 
the g ross  effect .  The lower pa r t  is a detailed view of the lower left 
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flux through the expanded nozzle. n = 1.2,  E = 5. 56,  Ahw= U, 
P,/P1 = 0.1. 
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Figure 18. Variations of burning r a t e  with p re s su re  during depressurizat ion a t  
various depressurizat ion r a t e s .  The upper par t  of the figure shows 
the g ross  effect. The lower pa r i  i s  a Z z t ~ i l e d  view of the lower left 
hand corner .  
flux through the expanded nozzle. 

The straight l ine originating a t  the origins i s  the m a s s  
n = 1.2, E = 5.56, Ah W = 0 ,  

P /P = 0 . 2 .  2 1  
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Figure 19. Variation of burning r a t e  with p re s su re  during depressurizat ion for 
the case:  n = 1, E = 5 .56 ,  Ahw = 0, and P2/P1 = 0.1. 
how the differences between burning ra tes  become m o r e  pronounced a s  
depressurization proceeds.  

The curves show 
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Variation of chamber p r e s s u r e  with time for two different p r e s s u r i z a -  
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Figure 21. Quench l imit  obtained in computer experiments .  The open symbols 
r ep resen t  experiments in  which the propellant quenched. The solid 
symbols represent  experiments in  which the propellant continued to 
burn.  n = 1.0 ,  E = 5. 56, and Ah W = 0. 
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Figure 2 2 .  Quench l imi t  obtained in  computer experiments.  'The ooen symbols 
r ep resen t  experiments in  which the propellant quenched. The solid 
symbols represent  experiments in which the propellant continued to 
burn. n = 1 . 0 ,  E = 5.56,  Ah = - 0 . 2 .  
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r e  23 .  Quench l imi t  obtained i n  computer experiments.  The open symbols 
r ep resen t  experiments in  which the propellant quenched. The solid 
symbols represent  experiments in which the propellant continued to 
burn. n = l . O ,  E = 5 . 5 6 ,  Ah = 0 . 2 .  
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Figure 24. Quench l imi t  obtained i n  computer experiments.  The open symbols 
r ep resen t  experiments in which the propellant quenched. The solid 
symbols r ep resen t  experiments in which the propellant continued to  
burn. n = 1. 0, E = 11.12, Ah = 0 .  
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Figure 2 5 .  Quench l imi t  obtained in  computer experiments.  The open symbols 
represent  experimpnts in  which the propellant quenched. The solid 
symbols represent  experiments in which the propellant continued to 
burn.  n = 0 . 8 ,  E = 5 .  56 ,  Ah = 0 .  
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Figure 26.  Quench l imit  obtained in computer experiments.  The open symbols 
represent  experiments in which the propellant quenched. The solid 
symbols represent  experiments in  which the propellant continued to 
burn.  n = 1. 2 ,  E = 5. 56, Ah = 0 .  
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Figure 2 7 .  Comparison of the results of the present work with the expected resul ts  
of a model which ascr ibes  quench-limits to  a constant cr i t ical  depres-  
surization t ime. 


